こんにちは!化工見習いです!
今回は化学工学全般で必要な基礎的事項である、【単位/単位換算】について解説します。
単位とは
まず、大前提として「単位」とはなんでしょうか。
「単位」を理解するには「物理量」と「次元」も併せて理解する必要があります。
この世には物理の性質を表す「物理量」というものがあります。
- 質量
- 長さ
- 時間
という簡単なものから、
- 運動量
- 速度
- 力
なども「物理量」です。我々はあるモノを手に持った時、「おも!/かる!」と感じますが、この概念を「質量」と名前付け、目の前を新幹線が走りすぎれば「はや!」と感じ、この概念を「速度」と名前付けています。
これが「物理量」です。
次に「次元」とは、「物理量」の構成要素またはその組み合わせのことで、アルファベットで記されることが多いです。
質量(Mass)の次元はM、長さの次元(Length)はL、時間の次元(Time)はTというように、頭文字で表されます。
例えば、速さ=距離/時間ですから、速さの次元は\(\text {LT}^{-1}\)となります。
では本題の「単位」とは、「物理量」の基準量です。「どれくらい」を「規格化」することで人、場所によらず統一できます。例えば以下のようなものがあります。
「質量」の単位例・・・g、lb、oz などなど
「長さ」の単位例・・・m、ft、寸 などなど
さきほど挙げた「速さ」の単位はよく目にする「m/s」や「km/h」などです。
例題-1
ではさっそく例題を解いてみましょう。
問. 圧力の次元を答えよ。(M,L,Tを用いよ)
問の答えをみる
\(\text {ML}^{-1}\text{T}^{-2}\)
単位変換
次に、「単位変換」について解説します。
「単位換算」とは、同じ次元の範囲で単位を変換することです。
小学校でやったようなものだと、1 m=100 cmや、1時間=60分などが単位変換の良い例です。
では、実際の変換方法を紹介します。
方法例
①3 kgをgで表したい場合
\(\displaystyle \text{3 kg = 3 kg} × \frac{1000 \text{ g}}{1 \text{ kg}} =\text{3000 g}\)
1000 g = 1 kgなので1000 g/1 kg は1です。なので3 kg に1000 g/1 kgを掛けても1を掛けているだけなので何も問題はありません。kg同士は約分され、単位としてはgが残ります。
②\(\displaystyle 1 \text{ m}^2 = 1 \text{ m}^2 × \frac{\text{100 cm}}{\text{1 m}}×\frac{\text{100 cm}}{\text{1 m}} = 10000 \text{ cm}^2\)
こちらも同じ考えです。このようにして単位変換を行います。
※「こんなの簡単じゃないか」と感じる人もいるかと思いますが、単位変換は結構重要で、丁寧にかつ正確に行わないと、余裕で計算結果が変わってきます。設計においては致命的な違いになってきますので、馬鹿にはできないというところです。
例題-2
では最後に例題です。
問1. \(\ 1 \text{ cm}^3\)は何\(\ \text{m}^3\)か?
問1の答えをみる
\(\displaystyle 1 \text{ cm}^3 = 1 \text{ cm}^3 × \frac{\text{1 m}}{\text{100 cm}}×\frac{\text{1 m}}{\text{100 cm}}×\frac{\text{1 m}}{\text{100 cm}}= 0.000001 \text{ m}^3\)
問2. 1 J/(g・K)は何 cal/(lb・K)か?ただし、1 cal=4.18 J、1 lb=0.45 kgとする。
問2の答えをみる
\(\displaystyle 1 \frac{\text{J}}{\text{g}・\text{K}} =1 \frac{\text{J}}{\text{g}・\text{K}}×\frac{1 \text{cal}}{4.18 \text{J}}×\frac{0.45 \text{kg}}{1 \text{lb}}×\frac{1000 \text{g}}{1 \text{kg}} = 107.7 \frac{\text{cal}}{\text{lb}・\text{K}}\)
まとめ
まとめです。
- 「物理量」とは物理の性質のこと。ex. 質量、長さ、時間、速さ、力など
- 「次元」とは物理量の構成要素またはその組み合わせで主にアルファベットで記される。ex. 質量の次元は\(\text {M}\)、長さの次元は\(\text{L}\)、時間の次元は\(\text{T}\)、速さの次元は\(\ \text{LT}^{-1}\)
- 「単位」とは「物理量の基準量」である。
コメント